Banner
Position:Home > Product > DEMS
In-situ Electrochemical Mass Spectrometer (Electrocatalysis DEMS)

In-situ Electrochemical Mass Spectrometer (Electrocatalysis DEMS)

Product details



图片2.jpg

QAS 100 Plus

图片1(1).jpg

QAS 100




Differential Electrochemical Mass Spectrometry (DEMS) is an in-situ electrochemical method that provides qualitative and quantitative information about the interface by detecting volatile products. It has become an indispensable tool in studying the mechanisms of electrochemical reactions. The DEMS system combines an electrochemical reaction setup with a mass spectrometer. Volatile products generated during the electrochemical reaction pass through a hydrophobic and gas-permeable membrane interface and enter the vacuum system of the mass spectrometer. The current of different mass-to-charge ratio ions is then recorded over time.

Cyclic Voltammetry (CV) is a commonly used electrochemical technique in the study of electrochemical reaction mechanisms. Rich electrochemical information can be obtained from the CV curves. As a result, CV is frequently used in DEMS research. During electrochemical research using DEMS, the mass spectrometer detects the ion current signals of the volatile products generated during the CV scanning process over time. By transforming these signals from the time axis to the potential axis, the Mass Spectrometric Cyclic Voltammogram (MSCV) is obtained, providing more comprehensive and in-depth information for the study of electrocatalytic reaction mechanisms.


图片9.jpg

Figure 1: Schematic Diagram of the Probe-based In-situ Differential Electrochemical Mass Spectrometry (DEMS) System.


 

Structure Composition: The system consists of a Mass Spectrometry Sampling Probe and a glass electrochemical cell.

Working Principle: The Mass Spectrometry Sampling Probe is positioned facing the working electrode in the glass electrochemical cell. The products generated on the working electrode are transferred through the probe's end filter membrane and detected by the mass spectrometer. A video microscope is used to precisely adjust the distance between the sampling probe and the working electrode.

 

Main Features:

1. Suitable for both flowing and static systems.

2. High collection efficiency and sensitivity.

3. Particularly suitable for single crystal electrodes.

4. Capable of multi-coupling with surface-enhanced infrared spectroscopy.

 

Specific Applications Include:

1. Instantaneous detection of gas-phase products (CO, CH4, C2H4, CH3OH, etc.) in CO2 electrocatalytic reduction and relative Faradaic efficiency determination.

2. In-situ detection of intermediate or final products (NO, N2O, NH2OH, NH3, N2, etc.) in nitrate electrocatalytic reduction.

3. Confirmation of OER (Oxygen Evolution Reaction) mechanisms with isotopic labeling of 18O in water electrolysis, LOM (Light Oxygen Molecule) or AEM (Anionic Exchange Membrane) reactions.

4. Instantaneous detection and current efficiency calculation of intermediate or final products (HCHO, HCOOH, CO, etc.) in methanol electrooxidation reactions.

5. Mechanistic analysis of hydrogen evolution reactions (HER) with hydrogen isotope labeling.

6. Evaluation of carbon materials' stability under high potential (CO and CO2 detection).

7. Other applications include photocatalysis, photoelectrocatalysis, oxygen reduction, hydroxide generation, chlorine evolution, organic electrosynthesis, and more.


Application Case:

1. Nitrate anion electrochemical reduction intermediate detection.


图片1(1)(1).jpg 

Angew. Chem. Int. Ed. 10.1002/anie.201915992

 

2. Electrolysis of water for OER isotope labeling with 18O, and confirmation of LOM or AEM reaction mechanism.


 新 2023-07-31 092633.jpg

J. Am. Chem. Soc. 2021, 143, 17, 6482-6490

 

3. Methanol electrocatalytic oxidation reaction.


图片3(1)(1).jpg 

Journal of Power Sources 509 (2021) 230397

 

4. Hydrogen isotope labeling and mechanistic analysis of Hydrogen Evolution Reaction (HER) with hydrogen gas evolution.


 1690099121466410.jpg

Nature catalysis, 2022,5,66-73

 

5. Electrochemical reduction of CO2.

 屏幕截图 2024-02-15 103558.jpg

ACS catal. 2019,9,1383-1388

 

 

Partial Customer Paper List:

Nature Catalysis. 2022, 5, 66-73

Nature Catalysis. 2021, 4, 1012-1023

J. Am. Chem. Soc. 2021, 143, 6482-6490

J. Am. Chem. Soc. 2019, 141, 9444-9447

Angew. Chem. Int. Ed. 2020, 59, 5350-5354

Angew. Chem. Int. Ed. 2019, 131, 4670-4674

Angew. Chem. Int. Ed. 2021, 60, 7297-7307

Angew. Chem. Int. Ed. 2021, 60, 22933-22939

Angew. Chem. Int. Ed. 2021, 60, 26177-26183

Angew. Chem. Int. Ed. 2022, e202204541

Joule. 2021, 5, 2164-2176

Nat. Commun. 2022, 13, 2191

Nat. Commun. 2021, 12, 2164

Adv. Mater. 2020, 32, 2002297

Adv. Energy Mater. 2020, 10, 2001289

Appl. Catal. B. 2021, 280, 119393

ACS Energy Letters. 2022, 7, 1187-1194

ACS Energy Letters. 2022, 7, 284-291

Chem. Eng.J. 2022, 435, 134969

Chem. Eng.J. 2022, 433, 133495

Environ. Sci. Technol. 2022, 56, 614-623

ACS Catal. 2021,11, 840-848

ACS Catal. 2019, 9, 4699-4705

Nano Energy. 2021, 86, 106088

NanoEnergy. 2019, 60, 43-51

ACS Catal. 2021, 11, 14032-14037

ACS Catal. 2020, 10, 3533-3540

ACS Appl. Mater. Interfaces. 2022, 14, 12257-12263

J. Mater. Chem. A. 2021, 9, 239-243

Cell Reports Physical Science. 2021, 2, 100378

J. Mater. Chem. A. 2021, 9, 9010-9017

Journal of Catalysis. 2021, 397, 128-136

Journal of Power Sources. 2021, 509, 230397

Science China Chemistry. 2020, 63, 1469-1476

Adv. Sustainable Syst. 2020, 4, 2000227

Science China Chemistry.2021, 64, 1493-1497

J. Colloid Interface Sci.  2022, 614, 405-414      

Angew. Chem. Int. Ed.  2022, 61, e20211563

Nat. Commun. 2022, 13, 2577  

J. Mater. Chem. A. 2022, 10, 6448–6453  

J. Mater. Chem. A. 2021, 9, 14741–14751

ACS Sustainable Chem. Eng. 2022, 10, 5958–5965

J. Mater. Chem. A. 2022, 10, 5430-5441

Appl. Catal. B.  2022, 301, 120829  

Adv. Mater. 2020, 2202523

Adv. Mater. 2020, 2202874

ACS Catal. 2022, 12, 14, 8658–8666

Energy Environ. Sci. 2022,15, 3912-3922

Adv. Mater. 2022, 2209307

Angew. Chem. Int. Ed. 2023, e202217071

ACS Nano. 2022, 16, 6, 9095–9104

Angew. Chem. Int. Ed. 2022, 61, e202212341

J. Am. Chem. Soc. 2022, 144, 35, 16006–16011

Adv. Energy Mater. 2022, 12, 2103960   

Nature Energy. 7, 978–988 (2022)   

Energy Environ. Sci. 2022, 15, 4175

Nat. Commun. (2022) 13:7958