Banner
Position:Home > Product > DEMS
In-situ Electrochemical Mass Spectrometer (Battery DEMS)

In-situ Electrochemical Mass Spectrometer (Battery DEMS)

Product details

Introduction to Differential Electrochemical Mass Spectrometry (DEMS)

Mass spectrometry is a powerful instrument for identifying substance compositions and can be used for gas analysis. Its advantages lie in its ability to analyze a wide range of substances, from the smallest hydrogen molecules to large organic vapors with molecular weights in the hundreds. It is a versatile gas analyzer with low detection limits, high sensitivity, wide linear range, and minimal gas consumption. Additionally, it allows for isotope labeling and finds broad applications in gas analysis for various types of batteries.

In-situ electrochemical mass spectrometry, also known as online electrochemical mass spectrometry, differential electrochemical mass spectrometry (DEMS), or online electrochemical mass spectrometry (OLEMS), is particularly useful for in-situ gas analysis during the charge and discharge processes of energy storage devices such as lithium-ion batteries. For gas-consuming battery types, like air batteries, it enables quantitative analysis of gas consumption. This technique provides real-time insights into the gas generation or consumption during different stages of battery operation, allowing for the determination of gas distribution patterns as voltage varies. As such, it is an essential analytical tool for investigating battery electrochemical reaction mechanisms, rapidly screening electrode materials, and evaluating electrolyte decomposition, among other crucial applications.


微信图片_20230704203546.jpg 

图片4.jpg


QAS 100 Li Plus

图片9.png 

QAS 100 Li


 

Application Introduction:


1. Quantitative detection of O2 and CO2 evolution during initial charging of lithium-rich cathode materials.

2. Quantitative detection of O2 and CO2 evolution during initial charging of high-voltage lithium cobalt oxide.

3. Quantitative detection of O2 and CO2 evolution during initial charging of ternary cathode materials.

4. Quantitative detection of O2 and CO2 evolution during initial charging of high-nickel cathode materials.

5. Quantitative detection of O2 and CO2 evolution during initial charging of sodium-ion battery cathode materials.

6. Quantitative detection of O2 and CO2 evolution during initial charging of anode materials.

7. Investigation of gas generation from electrolyte decomposition in batteries.

8. Detection of O2 and H2 evolution during charging and discharging processes of aqueous zinc-ion batteries.

9. Quantitative detection of O2 consumption during Li-O2 battery discharge and O2 evolution during charging.

10. Quantitative detection of CO2 consumption during Li-CO2 battery discharge and CO2 evolution during charging.


Customer application case:

1. Quantitative detection of O2 and CO2 evolution during initial charging of lithium-rich cathode materials.

新2023-07-31 093201.jpg 

Nat. Comm. 2022, 13,1123

2. Quantitative detection of O2 and CO2 evolution during initial charging of high-voltage lithium cobalt oxide.

    1705369832428320.jpg

Angew. Chem. 2021, 133, 27308 – 27318

3. Quantitative detection of O2 and CO2 evolution during initial charging of high-nickel cathode materials.

新2023-07-31 092633.jpg 

Small 2021, 2104282

4. Quantitative detection of O2 and CO2 evolution during initial charging of sodium-ion battery cathode materials.

图片4(1).jpg 

Nat. Comm. (2021) 12:5267

5. Detection of gas evolution during anode material discharge

图片5.jpg 

Energy Environ. Sci., 2019, 12, 2991--3000

6 .Detection of gas evolution from Lithium-ion battery electrolyte decomposition.

1690776305496129.png 

Journal of The Electrochemical Society, 162 (10) A1984-A1989 (2015)

7. Zinc-ion batteries.

1686898031569295.jpg 

Joule 2022, 6, 399-417

8. O2 Detection during Li-O2 battery charging and discharging process.

电池2023-08-01 163644(1).jpg 

ACS Appl. Mater. Interfaces, 2021,13,4062-4071 

9. CO2 gas detection during Li-CO2 battery charging and discharging process.

图片9(1).jpg 

Small 2021, 17, 2100642

 

 

Partial List of Published Papers by Clients: 

Angew. Chem. Int. Ed. 2019, 58, 2345-2349

Energy Environ. Sci. 2019, 12, 2991-3000

Adv. Funct. Mater. 2022, 32, 2105029 

Advanced Materials. 2022, 34, 2104792

Angew. Chem. Int. Ed2022, 61, e202114293

Angew. Chem. Int. Ed.  2021, 133, 26177-26184

Angew. Chem. Int. Ed.  2021, 133, 16540 -16544

Energy Environ. Sci.  2021, 14, 883-889

Adv. Funct. Mater. 2020, 30, 2002223

Adv. Energy Mater. 2020, 10, 1904262.

Adv. Funct. Mater. 2020, 2001619

Nat. Commun. 2020, 11, 1576

Angew. Chem. Int. Ed. 2020, 59, 7778-7782

Angew. Chem. Int. Ed. 2017, 56, 9126-9130

Angew. Chem. Int. Ed. 2017, 56, 7505-7509

ACS Appl. Mater. Interfaces. 2019, 11, 23207-23212

Chem.Comm. 2019, 55, 10092-10095

Energy Storage Materials. 2020, 26, 593-603

i science. 2019, 14, 312-322

ACS Catal. 2019, 9, 3773-3782

ACS Appl. Mater.Interfaces .2019, 11, 15656-15661

ACS Appl. Mater. Interfaces .2019, 11, 45674-45682

Energy Storage Materials. 2019, 20, 307-314

J. Mater. Chem. A. 2019, 7, 23046-23054

Journal of Catalysis. 2020, 384, 199-207

Electrochimica Acta. 2022, 419, 140424

ACS Cent.Sci. 2020, 6, 232-240

J. Mater. Chem. A. 2020, 8, 7733-7745

J. Mater. Chem. A. 2020, 8, 259-267

ACS Appl. Mater. Interfaces. 2016, 8, 31638-31645

Journal of Power Sources. 2020, 451, 227738

Small. 2019, 15, 1803246

Energy Storage Materials .2020, 30, 59-66

Adv. Sci. 2021, 8, 2100488

Adv. Funct. Mater. 2022, 32, 2108153

Energy Storage Materials. 2021, 43, 391-401

Cell Reports Physical Science. 2021, 2, 100583

Chemical Communications. 2021, 57, 8937-8940

Energy Storage Materials. 2021, 42, 618-627

ACS Nano. 2021, 15, 9841–9850

ACS Nano. 2022, 16, 1523–1532

Adv. Funct. Mater. 2022, 2112501

Adv. Energy Mater. 2022, 12, 2103667

Electrochimica Acta. 2022, 415,140216

ACS Appl. Mater. Interfaces. 2022, 14, 18561-18569

Adv. Energy Mater. 2022, 2103910

Joule. 2022, 6, 399–417

Small. 2021, 2104282

Angew. Chem. 2021, 133, 27308-27318

Adv. Funct. Mater. 2022, 2202679

ACS Appl. Energy Mater. 2020, 3, 12423-12432

Nat Commun. 2022, 13, 1123

Nat Commun. 2021, 12, 3071

ACS Appl. Mater. Interfaces. 2022, 14, 5308−5317

ACS Appl. Mater. Interfaces. 2021, 13, 360−369

Nat. Commun. 2021, 12, 5267

Nat. Commun. 2020, 11, 5519

Angew. Chem. Int. Ed. 2020, 59, 23061−23066

ACS Nano. 2021, 15, 8407−8417

Adv. Sci. 2022, 2104841

J. Am. Chem. Soc. 2022, 144, 3106-3116

Adv. Funct. Mater. 2022, 2113235

Journal of Energy Chemistry. 2022, 64, 511-519

Energy Environ. Sci. 2020, 13, 2540-2548

J. Mater. Chem. A. 2020, 8, 22754-22762

Adv. Energy Mater. 2021, 11, 2003263

ACS Appl. Mater.Interfaces. 2021, 13, 12159-12168

ACS Central Science 2021, 7, 175-182

ACS Appl. Mater.Interfaces. 2021, 13, 4062-4071

Journal of Power Sources. 2021, 495, 229782

Energy Storage Materials. 2021, 38, 130-140

Chem. Mater. 2020, 32, 9404-9414

Energy Storage Materials. 2021, 39, 60-69

Adv. Funct. Mater. 2021, 31, 2101423

Applied Surface Science. 2021, 565, 150612

Adv. Funct. Mater. 2021, 31, 2104011

Chemical Engineering Journal. 2021, 426, 131101

Energy Storage Materials. 2021, 41, 475-484

Journal of Materials Chemistry A. 2021, 9, 19922-19931

Small. 2021, 17, 2100642