Banner
Position:Home > Product > DEMS
Thin Layer Pool In-Situ Differential Electrochemical Cell

Thin Layer Pool In-Situ Differential Electrochemical Cell

Product details


Differential Electrochemical Mass Spectrometry (DEMS) is an in-situ electrochemical method that provides qualitative and quantitative information about the interface by detecting volatile products, making it an indispensable tool for studying electrochemical reaction mechanisms. The DEMS system combines an electrochemical reaction setup with a mass spectrometer, where volatile products generated from the electrochemical reaction pass through a hydrophobic and permeable membrane interface into the vacuum system of the mass spectrometer. The mass spectrometer then measures the current of different mass-to-charge ratio ions as a function of time. Cyclic Voltammetry (CV) is a commonly used electrochemical technique in the study of reaction mechanisms, and it provides rich electrochemical information from the obtained CV curves. Therefore, CV is frequently employed in DEMS studies. In DEMS-based electrochemical research, the ion current signal of the volatile products generated during the CV scan is detected by the mass spectrometer as a function of time. The transformation of the time axis to the potential axis provides the Mass Spectrometric Cyclic Voltammetry (MSCV) graph, which offers more comprehensive and in-depth information for studying the mechanisms of electrocatalytic reactions.


2.png 

Figure 1: Working principle of the thin layer pool


Performance advantages:

1. High collection efficiency and sensitivity.

2. Proton exchange membrane can be added to avoid interference from electrode products.

3. Suitable for catalytic materials with different supports, such as carbon paper and foam copper.

4. Option for a concentric or eccentric design.

 

Specific applications include:

1. Instantaneous detection of gas-phase products (CO, CH4, C2H4, CH3OH, etc.) in CO2 electrocatalytic reduction, as well as relative Faradaic efficiency determination.

2. In-situ detection of intermediate or final products (NO, N2O, NH2OH, NH3, N2, etc.) in nitrate electrocatalytic reduction.

3. Confirmation of the reaction mechanism in the oxygen evolution reaction (OER) of water electrolysis using isotopic labeling of 18O, LOM, or AEM.

4. Instantaneous detection and current efficiency calculation of intermediate or final products (HCHO, HCOOH, CO, etc.) in methanol electrooxidation reaction.

5. Mechanistic analysis of hydrogen evolution reaction (HER) using hydrogen isotope labeling and hydrogen gas evolution.

6. Evaluation of carbon material stability (CO and CO2 detection under high potential).

7. Other applications such as photocatalysis, photoelectrocatalysis, oxygen reduction, hydroxide production, chlorine gas evolution, organic electrosynthesis, etc.


Application case:

1. Detection of intermediates in nitrate electroreduction.


1690772100867096.jpg 

Angew. Chem. Int. Ed. 10.1002/anie.201915992


 2. Electrolysis of water with OER isotope labeling 18O to confirm LOM or AEM reaction mechanism.


新 2023-07-31 092633.jpg 

J. Am. Chem. Soc. 2021, 143, 17, 6482-6490

 

3. Methanol electrocatalytic oxidation reaction.


1690772346861426.jpg 

Journal of Power Sources 509 (2021) 230397

 

4. Hydrogen isotope labeling for mechanistic analysis of Hydrogen Evolution Reaction (HER).


 

图片4(1)(1).jpg 

Nature catalysis, 2022,5,66-73

 

5. Electrochemical reduction of CO2.


屏幕截图 2024-02-15 103558.jpg 

ACS catal. 2019,9,1383-1388

 

 

Partial List of Customer's Published Papers

Angew. Chem. Int. Ed. 2019, 58, 2345-2349

Energy Environ. Sci. 2019, 12, 2991-3000

Adv. Funct. Mater. 2022, 32, 2105029 

Advanced Materials. 2022, 34, 2104792

Angew. Chem. Int. Ed2022, 61, e202114293

Angew. Chem. Int. Ed.  2021, 133, 26177-26184

Angew. Chem. Int. Ed.  2021, 133, 16540 -16544

Energy Environ. Sci.  2021, 14, 883-889

Adv. Funct. Mater. 2020, 30, 2002223

Adv. Energy Mater. 2020, 10, 1904262.

Adv. Funct. Mater. 2020, 2001619

Nat. Commun. 2020, 11, 1576

Angew. Chem. Int. Ed. 2020, 59, 7778-7782

Angew. Chem. Int. Ed. 2017, 56, 9126-9130

Angew. Chem. Int. Ed. 2017, 56, 7505-7509

ACS Appl. Mater. Interfaces. 2019, 11, 23207-23212

Chem.Comm. 2019, 55, 10092-10095

Energy Storage Materials. 2020, 26, 593-603

i science. 2019, 14, 312-322

ACS Catal. 2019, 9, 3773-3782

ACS Appl. Mater.Interfaces .2019, 11, 15656-15661

ACS Appl. Mater. Interfaces .2019, 11, 45674-45682

Energy Storage Materials. 2019, 20, 307-314

J. Mater. Chem. A. 2019, 7, 23046-23054

Journal of Catalysis. 2020, 384, 199-207

Electrochimica Acta. 2022, 419, 140424

ACS Cent.Sci. 2020, 6, 232-240

J. Mater. Chem. A. 2020, 8, 7733-7745

J. Mater. Chem. A. 2020, 8, 259-267

ACS Appl. Mater. Interfaces. 2016, 8, 31638-31645

Journal of Power Sources. 2020, 451, 227738

Small. 2019, 15, 1803246

Energy Storage Materials .2020, 30, 59-66

Adv. Sci. 2021, 8, 2100488

Adv. Funct. Mater. 2022, 32, 2108153

Energy Storage Materials. 2021, 43, 391-401

Cell Reports Physical Science. 2021, 2, 100583

Chemical Communications. 2021, 57, 8937-8940

Energy Storage Materials. 2021, 42, 618-627

ACS Nano. 2021, 15, 9841–9850

ACS Nano. 2022, 16, 1523–1532

Adv. Funct. Mater. 2022, 2112501

Adv. Energy Mater. 2022, 12, 2103667

Electrochimica Acta. 2022, 415,140216

ACS Appl. Mater. Interfaces. 2022, 14, 18561-18569

Adv. Energy Mater. 2022, 2103910

Joule. 2022, 6, 399–417

Small. 2021, 2104282

Angew. Chem. 2021, 133, 27308-27318

Adv. Funct. Mater. 2022, 2202679

ACS Appl. Energy Mater. 2020, 3, 12423-12432

Nat Commun. 2022, 13, 1123

Nat Commun. 2021, 12, 3071

ACS Appl. Mater. Interfaces. 2022, 14, 5308−5317

ACS Appl. Mater. Interfaces. 2021, 13, 360−369

Nat. Commun. 2021, 12, 5267

Nat. Commun. 2020, 11, 5519

Angew. Chem. Int. Ed. 2020, 59, 23061−23066

ACS Nano. 2021, 15, 8407−8417

Adv. Sci. 2022, 2104841

J. Am. Chem. Soc. 2022, 144, 3106-3116

Adv. Funct. Mater. 2022, 2113235

Journal of Energy Chemistry. 2022, 64, 511-519

Energy Environ. Sci. 2020, 13, 2540-2548

J. Mater. Chem. A. 2020, 8, 22754-22762

Adv. Energy Mater. 2021, 11, 2003263

ACS Appl. Mater.Interfaces. 2021, 13, 12159-12168

ACS Central Science 2021, 7, 175-182

ACS Appl. Mater.Interfaces. 2021, 13, 4062-4071

Journal of Power Sources. 2021, 495, 229782

Energy Storage Materials. 2021, 38, 130-140

Chem. Mater. 2020, 32, 9404-9414

Energy Storage Materials. 2021, 39, 60-69

Adv. Funct. Mater. 2021, 31, 2101423

Applied Surface Science. 2021, 565, 150612

Adv. Funct. Mater. 2021, 31, 2104011

Chemical Engineering Journal. 2021, 426, 131101

Energy Storage Materials. 2021, 41, 475-484

Journal of Materials Chemistry A. 2021, 9, 19922-19931

Small. 2021, 17, 2100642