Banner
Position:Home > Product > DEMS
Classic DEMS Electrochemical Cell

Classic DEMS Electrochemical Cell

Product details


Classic DEMS Electrochemical Cell

Differential Electrochemical Mass Spectrometry (DEMS) is an in-situ electrochemical method that provides qualitative and quantitative information about interfacial processes by detecting volatile products. It has become an indispensable tool in the study of electrochemical reaction mechanisms. The DEMS system combines an electrochemical reaction setup with a mass spectrometer, allowing the volatile products generated during the electrochemical reaction to enter the vacuum system of the mass spectrometer through a hydrophobic permeable membrane interface. The mass spectrometer then records the variation of ion current with time for different mass-to-charge ratio ions. Among the commonly used electrochemical techniques for studying reaction mechanisms, cyclic voltammetry (CV) stands out as a versatile method that provides rich electrochemical information. Consequently, CV is frequently employed in DEMS studies. During an electrochemical study using DEMS, the ion current signals of volatile products generated during the CV scan are monitored by the mass spectrometer as a function of time. These signals are then transformed from the time axis to the potential axis to obtain a graph of ion current as a function of potential (MSCV), offering a more comprehensive and in-depth understanding for the investigation of electrocatalytic reaction mechanisms.


 

 

Main Features:

1. Stationary or flow-through system.

2. Small electrolyte volume (<1 mL), particularly suitable for isotope labeling experiments.

3. The membrane interface, composed of a porous working electrode and a hydrophobic permeable membrane, directly connects to the mass spectrometer chamber.

4. High collection efficiency (>95%) and high sensitivity.

5. Fast response time (<1 s).

6. Unique gold plating technology.

7. Applicable to powder catalysts or carbon paper-supported catalysts.

8. Suitable for photocatalytic or photoelectrocatalytic reactions.

 

Specific Applications Include:

1. Instantaneous detection of gas-phase products (CO, CH4, C2H4, CH3OH, etc.) in CO2 electrocatalytic reduction and determination of relative Faradaic efficiency.

2. In-situ detection of intermediate products or final products (NO, N2O, NH2OH, NH3, N2, etc.) in nitrate electrocatalytic reduction.

3. Isotope labeling (18O) in water electrolysis OER for confirmation of LOMor AEM reaction mechanisms.

4. Instantaneous detection and current efficiency calculation of intermediate products or final products (HCHO, HCOOH, CO, etc.) in methanol electrooxidation reactions.

5. Hydrogen isotope labeling and analysis of hydrogen evolution reaction (HER) mechanisms.

6. Evaluation of carbon material stability (detection of CO and CO2 under high potential).

7. Other applications including photocatalysis, photoelectrocatalysis, oxygen reduction, hydrogen evolution, chlorine evolution, organic electrosynthesis, etc.


Application Cases:

 

1.Detection of intermediates in nitrate electrochemical reduction.


图片1(1)(1).jpg 

Angew. Chem. Int. Ed. 10.1002/anie.201915992


2. Isotope labeling (18O) in water electrolysis OER for the confirmation of LOM or AEM reaction mechanisms.


新 2023-07-31 092633.jpg 

J. Am. Chem. Soc. 2021, 143, 17, 6482-6490

 

3. Methanol electrooxidation reaction.


图片3(1)(1).jpg 

Journal of Power Sources 509 (2021) 230397

 

4. Hydrogen isotope labeling and analysis of hydrogen evolution reaction (HER) mechanisms.

 

图片4(1)(1).jpg 

Nature catalysis,2022,5,66-73

 

5. CO2 electrochemical 

屏幕截图 2024-02-15 103558.jpg 

ACS catal. 2019,9,1383-1388

 

 

List of Some Customer Papers:

Nature Catalysis. 2022, 5, 66-73

Nature Catalysis. 2021, 4, 1012-1023

J. Am. Chem. Soc. 2021, 143, 6482-6490

J. Am. Chem. Soc. 2019, 141, 9444-9447

Angew. Chem. Int. Ed. 2020, 59, 5350-5354

Angew. Chem. Int. Ed. 2019, 131, 4670-4674

Angew. Chem. Int. Ed. 2021, 60, 7297-7307

Angew. Chem. Int. Ed. 2021, 60, 22933-22939

Angew. Chem. Int. Ed. 2021, 60, 26177-26183

Angew. Chem. Int. Ed. 2022, e202204541

Joule. 2021, 5, 2164-2176

Nat. Commun. 2022, 13, 2191

Nat. Commun. 2021, 12, 2164

Adv. Mater. 2020, 32, 2002297

Adv. Energy Mater. 2020, 10, 2001289

Appl. Catal. B. 2021, 280, 119393

ACS Energy Letters. 2022, 7, 1187-1194

ACS Energy Letters. 2022, 7, 284-291

Chem. Eng.J. 2022, 435, 134969

Chem. Eng.J. 2022, 433, 133495

Environ. Sci. Technol. 2022, 56, 614-623

ACS Catal. 2021,11, 840-848

ACS Catal. 2019, 9, 4699-4705

Nano Energy. 2021, 86, 106088

NanoEnergy. 2019, 60, 43-51

ACS Catal. 2021, 11, 14032-14037

ACS Catal. 2020, 10, 3533-3540

ACS Appl. Mater. Interfaces. 2022, 14, 12257-12263

J. Mater. Chem. A. 2021, 9, 239-243

Cell Reports Physical Science. 2021, 2, 100378

J. Mater. Chem. A. 2021, 9, 9010-9017

Journal of Catalysis. 2021, 397, 128-136

Journal of Power Sources. 2021, 509, 230397

Science China Chemistry. 2020, 63, 1469-1476

Adv. Sustainable Syst. 2020, 4, 2000227

Science China Chemistry.2021, 64, 1493-1497

J. Colloid Interface Sci.  2022, 614, 405-414      

Angew. Chem. Int. Ed.  2022, 61, e20211563

Nat. Commun. 2022, 13, 2577  

J. Mater. Chem. A. 2022, 10, 6448–6453  

J. Mater. Chem. A. 2021, 9, 14741–14751

ACS Sustainable Chem. Eng. 2022, 10, 5958–5965

J. Mater. Chem. A. 2022, 10, 5430-5441

Appl. Catal. B.  2022, 301, 120829  

Adv. Mater. 2020, 2202523

Adv. Mater. 2020, 2202874

ACS Catal. 2022, 12, 14, 8658–8666

Energy Environ. Sci. 2022,15, 3912-3922

Adv. Mater. 2022, 2209307

Angew. Chem. Int. Ed. 2023, e202217071

ACS Nano. 2022, 16, 6, 9095–9104

Angew. Chem. Int. Ed. 2022, 61, e202212341

J. Am. Chem. Soc. 2022, 144, 35, 16006–16011

Adv. Energy Mater. 2022, 12, 2103960   

Nature Energy. 7, 978–988 (2022)   

Energy Environ. Sci. 2022, 15, 4175

Nat. Commun. (2022) 13:7958